

Salicylic Acid Glucoside Acts as a Slow Inducer of Oxidative Burst in Tobacco Suspension Culture

Tomonori Kawano^{a,*}, Shigeo Tanaka^b, Takashi Kadono^a, and (the late)
Shoshi Muto^c

^a Graduate School of Environmental Engineering, The University of Kitakyushu,
Kitakyushu 808-0157, Japan. Fax: +81(0)93-695-3304.
E-mail: kawanotom@env.kitakyu-u.ac.jp

^b Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture,
Setagaya-ku, Tokyo 156-8502, Japan

^c Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan

* Author for correspondence and reprint requests

Z. Naturforsch. **59c**, 684–692 (2004); received March 24/June 14, 2004

Salicylic acid β -glucoside (SAG) is a storage form of a defense signal against pathogens, releasing free salicylic acid (SA), to meet the requirements in plants. Since excess SA induces locally restricted cell death following oxidative burst and Ca^{2+} influx in plants, the effects of SAG on cell viability, Ca^{2+} influx, and generation of superoxide ($\text{O}_2^{\bullet-}$) were examined in suspension-cultured tobacco BY-2 cells expressing aequorin. Among SA-related chemicals tested, only SAG induced the slow and long-lasting $\text{O}_2^{\bullet-}$ generation, although SAG was less active in acute $\text{O}_2^{\bullet-}$ generation, Ca^{2+} influx and induction of cell death. The prolonging action of SAG is likely due to gradual release of SA and the data suggested that a peroxidase-dependent reaction is involved. Notably, pretreatment with low-dose SA (50 μM) enhanced the response to SAG by 2.5-fold. There are four possible secondary messengers in early SA signaling detectable in the BY-2 culture, namely $\text{O}_2^{\bullet-}$, H_2O_2 , Ca^{2+} and protein kinase (PK). If these messengers are involved in the low-dose SA-dependent priming for SAG response, they should be inducible by low-dose SA. Among the four SA-inducible signaling events, PK activation was excluded from the low-dose SA action since a much higher SA dose (> 0.4 mM) was required for PK activation.

Key words: Priming, Salicylic Acid, Salicylic Acid β -Glucoside